大家好,今天小编为大家分享什么是实数的概念,让我们一起看看吧。
【初中数学】初中数学的43个基础知识点(上)
必备1.实数的相关概念
必备2.科学记数法
必备3.实数的大小比较
等等
资料整理特别全面,有需要的收藏保存下来哦
实数的定义是什么?
实数,是有理数和无理数的总称。
数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是惟一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
拓展资料:
一、实数的分类:
(1)按定义分类
(2)按正负(性质)分类:
二、从有理数扩充到实数以后,有理数中的相反数、倒数、绝对值等概念在实数范围内具有同样的意义
(1)实数a的相反数为-a,零的相反数是其本身;若实数a与b互为相反数,则a+b=0,反之亦然.
(2)实数a的倒数为1/a(a≠0),实数a与b互为倒数,则ab=1,反之亦然.
(3)实数a的绝对值表示为|a|,正实数的绝对值是它本身,零的绝对值是零,负实数的绝对值是它的相反数.
什么叫实数?
实数的概念:包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。实数包括0。
实数可以用来测量连续的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后 n 位,n 为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
由于有理数和无理数都有正负之分,如果按正负概念为标准,实数又可分类为
实数、正实数、正有理数、正无理数、零、负实数、负有理数、负无理数。
大家是怎么理解实数这个概念的
实数,是有理数和无理数的总称。数学上,实数定义为与数轴上的点相对应的数。实数可以直观地看作有限小数与无限小数,它们能把数轴“填满”。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母 R 表示。而表示n 维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
实数的概念是什么?
实数是有理数和无理数的总称。数学上,实数定义为与数轴上点相对应的数。实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。但仅仅以列举的方式不能描述实数的整体。实数和虚数共同构成复数。
实数可以分为有理数和无理数两类,或代数数和超越数两类。实数集通常用黑正体字母R表示。R表示n维实数空间。实数是不可数的。实数是实数理论的核心研究对象。
所有实数的集合则可称为实数系或实数连续统。任何一个完备的阿基米德有序域均可称为实数系。在保序同构意义下它是唯一的,常用R表示。由于R是定义了算数运算的运算系统,故有实数系这个名称。
扩展资料:
实数可实现的基本运算有加、减、乘、除、乘方等,对非负数(即正数和0)还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。
整数和小数的集合也是实数,而整数和分数统称有理数,小数分为有限小数,无限循环小数,无限不循环小数(即无理数),其中有限小数和无限循环小数均能化为分数,所以小数即为分数和无理数的集合,加上整数,即为整数-分数-无理数,也就是有理数-无理数,即实数。